课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
人工智能技术随着互联网的不断发展而得到广泛的应用,在许多软件开发公司中也有人工智能技术的研发项目,而今天我们就一起来了解一下,人工智能技术落地难的原因是什么。
一、战略方针不当
战略方针有两个方面:一是好高骛远,二是缺乏商业方法。
当谈到采用人工智能项目时,大多数组织通常都是从大规模的问题开始。主要原因之一是人们对人工智能的错误认识。
当前,人工智能被过分炒作,但并没有得到足够的应用。大部分人认为人工智能是一种先进的技术,不亚于魔法。虽然人工智能足以成为一项这样的技术,但它还处于非常初级的阶段。
而且,当一个组织采用人工智能,是对时间、金钱、资源和人力的巨大投资。因为公司投入了如此巨大的资金,他们也期待更高的回报。
但是,正如前面所提到的,人工智能还是太狭隘,不可能一蹴而就地推动这样的回报。那就意味着你得不到正的投资回报率了吗?完全不是这样。
人工智能的采用是一个循序渐进的过程。你构建的每个人工智能项目都是让人工智能成为你业务核心的一步。所以从一些小的项目开始,比如测量你的产品需求,预测信用评分,个性化营销等等。当你构建更多的项目时,你的人工智能会更好地理解你的需求(有了所有的数据),你就会看到更好的投资回报率。
接下来是问题的二个方面:当公司决定构建一个人工智能项目的时候,他们总是从技术的角度来看问题陈述。这一做法让他们不能衡量其真正的商业成功。
公司必须从商业角度来考虑问题。自问一下问题:
你想解决什么商业问题?
界定成功的衡量标准是什么?
回答完这些问题后,再决定用哪种技术来解决问题。请记住,人工智能包含了很多技术,比如机器学习、神经网络、深度学习、计算机视觉等。
要知道哪些技术适合当前的问题,然后开始构建人工智能解决方案。
二、缺乏优秀人才
很多人都忘了人工智能是人类创造的工具。数据当然是一个关键因素,但是人类是用数据开发人工智能的人。而目前,缺乏能够构建高效人工智能系统的天才专业人员。
从质量和经验两个方面考虑,短缺将进一步减少。要精通或成为人工智能专家需要很多年的时间。要成为人工智能专家,人们必须具备各种各样的基本技能,例如统计学、数学和编程。而且,因为人工智能是一个不断发展的领域,人工智能从业者必须不断更新自身。
他们需要从员工队伍中发现人才,并对他们进行技能提升。他们可以逐渐地将这一过程扩展到组织的其他部分。
组织需要与大学合作,架设学术与产业之间的桥梁。如果清楚地了解所需的技能并拥有合适的资源,大学可以训练学生掌握行业所需的技能。
尽管教学改革将推动人工智能的发展,但这仍是一种长期的方法。那么现在呢?三个吸引人的方法就是专业的人工智能公司,有合适的人才来构建人工智能模型,以及提供人工智能即服务。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。