课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
任何一个软件系统都是需要全面的监控和维护的,同理,人工智能技术实践也是需要做好相对应的监控管理维护工作,下面我们就一起来了解一下具体情况吧。
只要你买了一辆车,它具有你所需要的所有必需功能。这款车辆行驶平稳,帮助你在几分钟内到达工作地点,甚至根据你的喜好定制环境。那是不是说它不需要你的关注和维护呢?绝对不是。
类似的,为了简单起见,构建和部署人工智能就像拥有一辆汽车。在部署之后,还需要维护人工智能。不过,维护人工智能是一项远比汽车维护更大的工程。
人工智能系统会根据提供给它们的数据来作出无数的决策。假如人们不能理解一个人工智能是如何做出某一决策的,那么这个人工智能系统就被称为“黑盒人工智能”。
确定你的人工智能不会变成黑盒是至关重要的,尤其是在做决策的时候,例如处理贷款、建议医疗方法、接受大学申请等等。很多政府都意识到了黑盒问题,并且考虑规范这些技术。即便没有法律的约束,确保人工智能的公平与公正也成为了开发者的道德责任。
另一个挑战是数据和业务场景的动态特性。数据不太可能在人工智能项目的整个生命周期中保持静态。当数据改变时,人工智能也需要重新校准以确保不会偏离其性能。
对人工智能系统进行重新校准的过程与构建一个全新的模型相似。正如其他人工智能项目一样,这需要时间和资源。为了达到这个目的,大多数公司都在很长一段时间内延伸自己的模型,而没有“维护”或适应模型中的业务变更。但你不能等到模型开始“漂移”而引起不必要的影响。
要解决这些问题,组织必须持续监控他们的人工智能系统。当数据和业务场景发生变化时,人工智能需要定期更新。要减少这一过程的难度,你可以使用人工智能观察工具,帮助你监控模型和报告不必要的“漂移”。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。