课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
数据治理对于提高数据质量来说是有很大的帮助作用的,而今天我们就一起来了解一下,数据治理流程与重要性分析。
数据治理工作
数据治理是专注于将数据作为企业的商业资产进行应用和管理的一套管理机制,能够消除数据的不一致性,建立规范的数据应用标准,提高组织数据质量,实现数据广泛共享,并能够将数据作为组织的宝贵资产应用于业务、管理、战略决策中,发挥数据资产的商业价值。
数据治理核心
数据治理涵盖主数据管理、元数据管理、数据质量管理、数据标准管理、数据安全管理、数据生命周期管理等内容。为了有效管理信息资源,必须构建数据治理体系。数据治理体系包含数据模型、数据生命周期、数据标准、主数据、数据质量、数据服务、数据安全等内容,它们彼此有机结合,相互支撑。
数据模型空白
数据模型是数据架构中重要的一部分,包括概念数据模型、逻辑数据模型和物理数据模型,是数据治理的关键。数据模型应该具有非冗余、稳定、一致、易用等特征。
数据生命周期
数据生命周期管理主要包括数据创建、存储、查询、提取、备份、恢复、停用等环节。
数据标准空白
数据标准,是指对源数据(不含指标)的表达、格式及定义的一致约定,具体包括源数据的业务属性、技术属性和管理属性。数据治理对数据标准的需求可以划分为两类,即基础性标准和应用性标准。基础性标准包括数据分类与编码、数据字典、数字地图标准;应用性标准包括元数据标准、数据交换技术规范、数据传输协议、数据质量标准等。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。