课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
随着互联网的不断发展,越来越多的企业都引入了大数据技术,而今天我们就通过案例分析来了解一下,大数据分析常见问题都有哪些。
(1)数据不足
有些组织可能由于分析数据不足,无法生成新的见解。这可能是由于缺乏数据集成或数据组织不当造成的。
在这种情况下,可以进行数据审核,并确保现有数据集成提供所需的见解。新数据源的集成也可以消除数据的缺乏。还需要检查原始数据是如何进入系统的,并确保所有可能的维度和指标均已经公开并进行分析。后,数据存储的多样性也可能是一个问题。可以通过引入数据湖来解决这一问题。
(2)数据响应慢
当组织需要实时接收见解时,通常会发生这种情况,但是其系统是为批处理而设计的。因此有些数据现在仍无法使用,因为它们仍在收集或预处理中。
检查组织的ETL(提取、转换、加载)是否能够根据更频繁的计划来处理数据。在某些情况下,批处理驱动的解决方案可以将计划调整提高两倍。另一个选择是使用一种称为Lambda架构的方法,该方法允许组织将传统的批处理管道与快速的实时流结合起来。
(3)新系统采用旧方法
虽然组织采用了新系统。但是通过原有的办法很难获得更好的答案。这主要是一个业务问题,并且针对这一问题的解决方案因情况而异。好的方法是咨询行业专家,行业专家在分析方法方面拥有丰富经验,并且了解其业务领域。
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!更多内容请在707945861群中学习了解。